Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 132, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102238

RESUMO

Microbial composition and diversity in marine sediments are shaped by environmental, biological, and anthropogenic processes operating at different scales. However, our understanding of benthic microbial biogeography remains limited. Here, we used 16S rDNA amplicon sequencing to characterize benthic microbiota in the North Sea from the top centimeter of 339 sediment samples. We utilized spatially explicit statistical models, to disentangle the effects of the different predictors, including bottom trawling intensity, a prevalent industrial fishing practice which heavily impacts benthic ecosystems. Fitted models demonstrate how the geographic interplay of different environmental and anthropogenic drivers shapes the diversity, structure and potential metabolism of benthic microbial communities. Sediment properties were the primary determinants, with diversity increasing with sediment permeability but also with mud content, highlighting different underlying processes. Additionally, diversity and structure varied with total organic matter content, temperature, bottom shear stress and bottom trawling. Changes in diversity associated with bottom trawling intensity were accompanied by shifts in predicted energy metabolism. Specifically, with increasing trawling intensity, we observed a transition toward more aerobic heterotrophic and less denitrifying predicted metabolism. Our findings provide first insights into benthic microbial biogeographic patterns on a large spatial scale and illustrate how anthropogenic activity such as bottom trawling may influence the distribution and abundances of microbes and potential metabolism at macroecological scales.

2.
Genome Biol Evol ; 15(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37481260

RESUMO

Macroalgal (seaweed) genomic resources are generally lacking as compared with other eukaryotic taxa, and this is particularly true in the red algae (Rhodophyta). Understanding red algal genomes is critical to understanding eukaryotic evolution given that red algal genes are spread across eukaryotic lineages from secondary endosymbiosis and red algae diverged early in the Archaeplastids. The Gracilariales is a highly diverse and widely distributed order including species that can serve as ecosystem engineers in intertidal habitats and several notorious introduced species. The genus Gracilaria is cultivated worldwide, in part for its production of agar and other bioactive compounds with downstream pharmaceutical and industrial applications. This genus is also emerging as a model for algal evolutionary ecology. Here, we report new whole-genome assemblies for two species (Gracilaria chilensis and Gracilaria gracilis), a draft genome assembly of Gracilaria caudata, and genome annotation of the previously published Gracilaria vermiculophylla genome. To facilitate accessibility and comparative analysis, we integrated these data in a newly created web-based portal dedicated to red algal genomics (https://rhodoexplorer.sb-roscoff.fr). These genomes will provide a resource for understanding algal biology and, more broadly, eukaryotic evolution.


Assuntos
Gracilaria , Rodófitas , Gracilaria/genética , Ecossistema , Rodófitas/genética , Genômica , Genoma
3.
Ecol Evol ; 13(1): e9753, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36713485

RESUMO

Seaweeds are colonized by a microbial community, which can be directly linked to their performance. This community is shaped by an interplay of stochastic and deterministic processes, including mechanisms which the holobiont host deploys to manipulate its associated microbiota. The Anna Karenina principle predicts that when a holobiont is exposed to suboptimal or stressful conditions, these host mechanisms may be compromised. This leads to a relative increase of stochastic processes that may potentially result in the succession of a microbial community harmful to the host. Based on this principle, we used the variability in microbial communities (i.e., beta diversity) as a proxy for stability within the invasive holobiont Gracilaria vermiculophylla during a simulated invasion in a common garden experiment. Independent of host range, host performance declined at elevated temperature (22°C) and disease incidence and beta diversity increased. Under thermally stressful conditions, beta diversity increased more in epibiota from native populations, suggesting that epibiota from non-native holobionts are thermally more stable. This pattern reflects an increase in deterministic processes acting on epibiota associated with non-native hosts, which in the setting of a common garden can be assumed to originate from the host itself. Therefore, these experimental data suggest that the invasion process may have selected for hosts better able to maintain stable microbiota during stress. Future studies are needed to identify the underlying host mechanisms.

4.
J Phycol ; 58(2): 330-342, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35090190

RESUMO

Fungal symbionts of terrestrial plants are among the most widespread and well-studied symbioses, relatively little is known about fungi that are associated with macroalgae. To fill the gap in marine fungal taxonomy, we combined simple culture methods with amplicon sequencing to characterize the fungal communities associated with three brown (Sargassum muticum, Pelvetia canaliculata, and Himanthalia elongata) and two red (Mastocarpus stellatus and Chondrus crispus) macroalgae from one intertidal zone. In addition to characterizing novel fungal diversity, we tested three hypotheses: fungal diversity and community composition vary (i) among species distributed at different tidal heights, (ii) among tissue types (apices, mid-thallus, and stipe), and (iii) among "isomorphic" C. crispus life cycle stages. Almost 70% of our reads were classified as Ascomycota, 29% as Basidiomycota, and 1% that could not be classified to a phylum. Thirty fungal isolates were obtained, 18 of which were also detected with amplicon sequencing. Fungal communities differed by host and tissue type. Interestingly, P. canaliculata, a fucoid at the extreme high intertidal, did not show differences in fungal diversity across the thallus. As found in filamentous algal endophytes, fungal diversity varied among the three life cycle stages in C. crispus. Female gametophytes were also compositionally more dispersed as compared to the fewer variable tetrasporophytes and male gametophytes. We demonstrate the utility of combining relatively simple cultivation and sequencing approaches to characterize and study macroalgal-fungal associations and highlight the need to understand the role of fungi in near-shore marine ecosystems.


Assuntos
Chondrus , Alga Marinha , Animais , Ecossistema , Endófitos , Estágios do Ciclo de Vida
5.
Antonie Van Leeuwenhoek ; 114(12): 2189-2203, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34674103

RESUMO

This work introduces Waterburya agarophytonicola Bonthond and Shalygin gen. nov., sp. nov, a baeocyte producing cyanobacterium that was isolated from the rhodophyte Agarophyton vermiculophyllum (Ohmi) Gurgel et al., an invasive seaweed that has spread across the northern hemisphere. The new species genome reveals a diverse repertoire of chemotaxis and adhesion related genes, including genes coding for type IV pili assembly proteins and a high number of genes coding for filamentous hemagglutinin family (FHA) proteins. Among a genetic basis for the synthesis of siderophores, carotenoids and numerous vitamins, W. agarophytonicola is potentially capable of producing cobalamin (vitamin B12), for which A. vermiculophyllum is an auxotroph. With a taxonomic description of the genus and species and a draft genome, this study provides as a basis for future research, to uncover the nature of this geographically independent association between seaweed and cyanobiont.


Assuntos
Cianobactérias , Rodófitas , Alga Marinha , Cianobactérias/genética , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
6.
J Phycol ; 57(5): 1403-1410, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218439

RESUMO

Single-gene markers, such as the mitochondrial cox1, microsatellites, and single-nucleotide polymorphisms are powerful methods to describe diversity within and among taxonomic groups and characterize phylogeographic patterns. Large repositories of publicly-available, molecular data can be combined to generate and evaluate evolutionary hypotheses for many species, including algae. In the case of biological invasions, the combination of different molecular markers has enabled the description of the geographic distribution of invasive lineages. Here, we review the phylogeography of the widespread invasive red macroalga Agarophyton vermiculophyllum (synonym Gracilaria vermiculophylla). The cox1 barcoding provided the first description of the invasion history and hinted at a strong genetic bottleneck during the invasion. Yet, more recent microsatellite and SNP genotyping has not found evidence for bottlenecks and instead suggested that genetically diverse inocula arose from a highly diverse source population, multiple invasions, or some mix of these processes. The bottleneck evident from cox1 barcoding likely reflects the dominance of one mitochondrial lineage, and one haplotype in particular, in the northern source populations in Japan. Recent cox1 sequencing of A. vermiculophyllum has illuminated the complexity of phylogeographic structure in its native range of the northwest Pacific Ocean. For example, the western coast of Honshu in the Sea of Japan displays spatial patterns of haplotypic diversity with multiple lineages found together at the same geographic site. By consolidating the genetic data of this species, we clarify the phylogenetic relationships of a well-studied macroalga introduced to virtually every temperate estuary of the Northern Hemisphere.


Assuntos
Rodófitas , Alga Marinha , DNA Mitocondrial , Variação Genética , Repetições de Microssatélites , Filogenia , Filogeografia
7.
ISME J ; 15(6): 1668-1679, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33479490

RESUMO

Invasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar -or more common- microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.


Assuntos
Microbiota , Rodófitas , Alga Marinha , Humanos , Espécies Introduzidas
8.
Front Plant Sci ; 11: 690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719689

RESUMO

Cytospora canker is a destructive disease of numerous hosts and causes serious economic losses with a worldwide distribution. Identification of Cytospora species is difficult due to insufficient phylogenetic understanding and overlapped morphological characteristics. In this study, we provide an assessment of 23 Cytospora spp., which covered nine genera of Rosaceae, and focus on 13 species associated with symptomatic branch or twig canker and dieback disease in China. Through morphological observation and multilocus phylogeny of internal transcribed spacer (ITS), large nuclear ribosomal RNA subunit (LSU), actin (act), RNA polymerase II subunit (rpb2), translation elongation factor 1-α (tef1-α), and beta-tubulin (tub2) gene regions, the results indicate 13 distinct lineages with high branch support. These include 10 new Cytospora species, i.e., C. cinnamomea, C. cotoneastricola, C. mali-spectabilis, C. ochracea, C. olivacea, C. pruni-mume, C. rosicola, C. sorbina, C. tibetensis, and C. xinjiangensis and three known taxa including Cytospora erumpens, C. leucostoma, and C. parasitica. This study provides an initial understanding of the taxonomy of Cytospora associated with canker and dieback disease of Rosaceae in China.

9.
Mol Ecol ; 29(11): 2094-2108, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32408381

RESUMO

Communities are shaped by scale dependent processes. To study the diversity and variation of microbial communities across scales, the invasive and widespread seaweed Agarophyton vermiculophyllum presents a unique opportunity. We characterized pro- and eukaryotic communities associated with this holobiont across its known distribution range, which stretches over the northern hemisphere. Our data reveal that community composition and diversity in the holobiont vary at local but also larger geographic scales. While processes acting at the local scale (i.e., within population) are the main structuring drivers of associated microbial communities, changes in community composition also depend on processes acting at larger geographic scales. Interestingly, the largest analysed scale (i.e., native and non-native ranges) explained variation in the prevalence of predicted functional groups, which could suggest a functional shift in microbiota occurred over the course of the invasion process. While high variability in microbiota at the local scale supports A. vermiculophyllum to be a generalist host, we also identified a number of core taxa. These geographically independent holobiont members imply that cointroduction of specific microbiota may have additionally promoted the invasion process.


Assuntos
Microbiota , Rodófitas/microbiologia , Alga Marinha/microbiologia , Espécies Introduzidas , Microbiota/genética
10.
MycoKeys ; 59: 67-94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662621

RESUMO

Diaporthales is a fungal order comprising important plant pathogens, saprobes and endophytes on a wide range of woody hosts. It is often difficult to differentiate the pathogens in this order, since both the morphology and disease symptoms are similar among the various species. In the current study, we obtained 15 representative diaporthalean isolates from six tree hosts belonging to plant families Betulaceae, Fagaceae, Juglandaceae, Rosaceae, and Ulmaceae from Mount Dongling in China. Six species were identified residing in four families of Diaporthales (Diaporthaceae, Erythrogloeaceae, Juglanconidaceae and Melanconidaceae). Based on morphological comparison and the phylogenetic analyses of partial ITS, LSU, cal, his3, rpb2, tef1-α and tub2 gene sequences, we identified five known species (Diaporthe betulina, D. eres, D. rostrata, Juglamconis oblonga and Melanconis stilbostoma) and one novel species (Dendrostoma donglinensis). These results represent the first study of diaporthalean fungi associated with canker and dieback symptoms from Mount Dongling in Beijing, China.

11.
Mycobiology ; 47(3): 319-328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620308

RESUMO

Cytospora is a genus including important phytopathogens causing severe dieback and canker diseases distributed worldwide with a wide host range. However, identification of Cytospora species is difficult since the currently available DNA sequence data are insufficient. Aside the limited availability of ex-type sequence data, most of the genetic work is only based on the ITS region DNA marker which lacks the resolution to delineate to the species level in Cytospora. In this study, three fresh strains were isolated from the symptomatic branches of Elaeagnus angustifolia in Xinjiang Uygur Autonomous Region, China. Morphological observation and multi-locus phylogenetic analyses (ITS, LSU, ACT and RPB2) support these specimens are best accommodated as a distinct novel species of Cytospora. Cytospora elaeagnicola sp. nov. is introduced, having discoid, nearly flat, pycnidial conidiomata with hyaline, allantoid conidia, and differs from its relatives genetically and by host association.

12.
PeerJ ; 6: e4323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441234

RESUMO

Corals host diverse microbial communities that are involved in acclimatization, pathogen defense, and nutrient cycling. Surveys of coral-associated microbes have been particularly directed toward Symbiodinium and bacteria. However, a holistic understanding of the total microbiome has been hindered by a lack of analyses bridging taxonomically disparate groups. Using high-throughput amplicon sequencing, we simultaneously characterized the Symbiodinium, bacterial, and fungal communities associated with the Caribbean coral Siderastrea siderea collected from two depths (17 and 27 m) on Conch reef in the Florida Keys. S. siderea hosted an exceptionally diverse Symbiodinium community, structured differently between sampled depth habitats. While dominated at 27 m by a Symbiodinium belonging to clade C, at 17 m S. siderea primarily hosted a mixture of clade B types. Most fungal operational taxonomic units were distantly related to available reference sequences, indicating the presence of a high degree of fungal novelty within the S. siderea holobiont and a lack of knowledge on the diversity of fungi on coral reefs. Network analysis showed that co-occurrence patterns in the S. siderea holobiont were prevalent among bacteria, however, also detected between fungi and bacteria. Overall, our data show a drastic shift in the associated Symbiodinium community between depths on Conch Reef, which might indicate that alteration in this community is an important mechanism facilitating local physiological adaptation of the S. siderea holobiont. In contrast, bacterial and fungal communities were not structured differently between depth habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...